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After the war, together with a small group of selected engineers and mathematicians, Johnny
built, at the Institute for Advanced Study, an experimental electronic calculator, popularly known
as Joniac, which eventually became the pilot model for similar machines all over the country. 
Some of the basic principles developed in the Joniac are used even today in the fastest and most
modern calculators.  To design the machine, Johnny and his co-workers tried to imitate some of
the known operations of the live brain.  This is the aspect which led him to study neurology, to
seek out men in the fields of neurology and psychiatry, to attend meetings on these subjects, and,
eventually, to give lectures to groups on the possibilities of copying an extremely simplified
model of the living brain for man-made machines. 

- Klara von Neumann, wife of John von Neumann (Preface to von Neumann 1958, p.
viii). 

Turing knew perfectly well what the job he had to do, which was to manufacture or design a
machine that would do the complicated sort of mathematics that had to be done in the
Mathematical Division of NPL.  But he had all sorts of interesting things that he liked to do:  for
example, he was really quite obsessed with knowing how the human brain worked and the
possible correspondence with what he was doing on computers. . . . Turing thought that the
machine should be made quite simple, and at the same time should make everything possible that
could be done.  His particular purpose was to permit the writing of programs that modify
programs, not in the simple way now common but rather in the way that people think. 

-Ted Newman, colleague of Alan Turing (Newman 1994, p. 12).
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1. Introduction

The purpose of this essay is to clarify some of the important senses in which the



In these examples I have tried to make X the model, Y the thing modeled, and Z the agent doing the
1

modeling.  It would be more proper to include “for Z” in each of the prepositional cases.
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relationship between the brain and the computer might be considered as one of “modeling.”  It

also considers the meaning of “simulation” in the relationships between models, computers and

brains.  While there has been a fairly broad literature emerging on models and simulations in

science, these have primarily focused on the physical sciences, rather than the mind and brain. 

And while the cognitive sciences have often invoked concepts of modeling and simulation, they

have been frustratingly inconsistent in their use of these terms, and the implicit relations to their

scientific roles.  My approach is to consider the early convolution of brain models and

computational models in cybernetics, with the aim of clarifying their significance for more

current debates in the cognitive sciences.  It is my belief that clarifying the historical senses in

which the brain and computer serve as models of each other in the historical period prior to the

birth of AI and cognitive science is a crucial task for an archeology of AI and the history of

cognitive science.

“Model” is a challenging concept, in part because it is both a noun and a verb, an object

and a practice, and it takes many prepositional forms–X models Y, X is a model of Y, X is a model

for Y, Y is modeled on X, Y is modeled after X and even Y models for Z.   Thus, we could say that1

the brain was a model for the structure of computer (or the computer was modeled on the brain)

in the sense that the designers of the early computers, such as John von Neumann, treated the

biological brain like an artist’s model, and crafted the computer in its image.  Of course, once

completed, we might be inclined to think of the artist’s sculpture as a sort of model of the subject

it is based upon–and so we might think of the computer as a model of the brain.  This would

seem to be the case for certain electronic devices that were models of the performance and

behavior of the brain, such as W. Ross Ashby’s  Homeostats which were meant to be models of

the adaptive properties of the brain, or W. Grey Walter’s Tortoises which were meant to be

models of the dynamic drives of the living brain.  In yet another sense, the first computers were

seen by some, such as Alan Turing, as models of the fundamental structure of the brain in the

sense that the digital computer was an engineered device that worked on the same principles as

the brain and could be used to test theories about how the higher level functions of the brain



A classic example are the Monte Carlo simulations devised by John von Neumann, Stanislaw Ulam and
2

Enrico Fermi in the development of the atomic and hydrogen bombs.
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might operate. For each of these cases, the actual process of modeling, the construction of each

device, was unique and complex, and involved further models of the brain and behavior, both

concrete and abstract.  I have considered the nature of working models as represented by the

Homeostats and Tortoises elsewhere (Asaro 2006).  This essay will add to theoretical and

working models another class–the “simulation”–which is a term used in nearly as many ways as

“model.”  For many authors, a “simulation” is simply synonymous with “model,” while for

others it is what I call a “working model,” because its behavior can become the subject of

empirical inquiry. In its more precise usage “simulation” generally refers to a special class of

models defined by their use–specifically computational models used to approximate the behavior

of a system of equations that are too difficult to solve by analytic techniques.   Because of the2

power of the computer, simulations have come to be one of the most significant kinds of models

in scientific practice.  Yet they occupy a strange place vis a vis working models like the

Homeostat and Tortoise.  In fact, one might see computational simulations as challenging the

distinction between theoretical and working models.  On the one hand, simulations appear to be

something like automated theories.  On the other hand, simulations seem to be the most abundant

form of models that do something–working models.  It is this duality of character that leads to

both the power of simulations, and the difficulty of properly understanding their role in science.

I begin with a review of some crucial aspects of the work of John von Neumann and Alan

Turing, who were involved in the theorization of mathematical computation and the design of the

first general-purpose stored-program computers.  They also theorized the ways in which the

computer could simulate the brain and mind.  What this examination reveals is that the design of

the first general-purpose computers drew heavily upon the McCulloch and Pitts (1943) neuron

model and other aspects of neurophysiology.  That is to say, the first computers were modeled on

the brain, or more precisely were modeled on theoretical models of neurons.  There is also a

sense in which the mathematical theory of computation was modeled on the human practices of

performing mathematical computations.  These basic forms of modeling are not often discussed,

yet I believe they have had a significant impact on our theoretical intuitions regarding the more
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complex forms of modeling of the computer after the brain.  This was especially true early on,

when computers were commonly referred to as “giant brains” (Berkeley 1949).

The computer is a unique artifact among the tools of modeling for several reasons that

deserve special attention.  Of course, the very notion of a symbolic simulation is tied up with

ideas about the nature of computation and the technological performance of working computers. 

Moreover, these ideas, and the conceptualization and design of the first computers, are intimately

related to models of the brain and mind in multiple and complex ways.  Part of the purpose of

this essay is to make these multiple and complex relations visible as instances of the different

types of scientific modeling and models.  Thus in considering the computer and the brain we can

find instances of each type of model we have just considered–theoretical and working models–as

well as the simulations that will be discussed shortly.

Before embarking on our historical journey to the electronic brains of the 1940s, it is

worthwhile to consider the view of the mind that has dominated cognitive psychology since then. 

The philosophical view that the mind is a computer has been dubbed “Computationalism.”  As

the preface to a recent book on Computationalism summarizes the view:

Are minds computers? . . . Computationalism–the view that mental states are
computational states–is based on the conviction that there are program descriptions of
mental processes and that, at least in principle, it is possible for computers, that is,
machines of a particular kind, to possess mentality. (Scheutz 2002, p. ix).

Despite the many different formulations of it, Computationalism is rooted in the basic analogy

between mental states and computational states–the different formulations are the result of

different definitions and conceptions of these two types of states.  Most often, computational

states are defined in terms of the stored-program digital serial computer, or the mathematical

theory of computation.  Two of the mathematicians most responsible for the development of the

mathematical theory of computation, and who had the greatest influence on the design of the first

such computers–Turing and von Neumann–were also engaged in the project of building synthetic

minds.  As we will see in this chapter, while they shared a common understanding of

computation, they differed in their views of how a computer might simulate a brain or the mind. 

Still different from these was W. Ross Ashby’s attempts to model mental phenomena.  Ashby

saw “information processing” as central to the adaptive mind, but not strictly as a form of
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computation.  As a result of this, he built analog simulations (working models) of the brain,

whereas Turing and von Neumann were seeking different kinds of symbolic simulations

(theoretical models).

First, a clarification of the distinction between simulations as working models and

simulations as automated theoretical models is in order.  The usefulness of distinguishing the

various types of models and modeling will be demonstrated by examining the early history of the

computer and attempts to simulate the brain with these early machines.  In so doing, I will

consider the automata theory developed by von Neumann as he was designing the EDVAC,

arguably the first stored-program computer.  We will also consider his use of the McCulloch and

Pitts neuron model in this design, and his later thoughts on simulating the brain on the computer. 

We will then consider Turing’s preoccupation with the universal (Turing) machine, as a model of

the mind and brain.  This will lead us to Turing’s suggestion to Ashby to simulate the Homeostat

on his ACE computer, and a direct comparison of these two types of simulations.  I then

conclude with the implications of the developed view of models and simulations for

Computationalism.

2. Analog and Symbolic Simulations

There is an advantage to making a careful distinction between theoretical models and

working models.  While the notion of theoretical models has its roots in the normative

philosophy of science, both theoretical and working models are useful to a descriptive

naturalistic study of scientific practice.  The crucial distinction to be made between them is that

working models do something in the world, they have material agency, and this agency is

independent of human agency.  Theoretical models can also have agency, however this is a

normative disciplinary agency (Pickering 1995, p. 114-120) and it is not completely independent

of human agency, but requires a human agency willing to conform to its normative rules and

disciplined constraints.  Let us consider more carefully the distinction between theoretical and

working models, and how they relate to the current philosophical discussion of simulations.

In his recent work on computational simulations, Winsberg (2001, 2003) considers three

traditional attempts to account for computational simulations in physics: as metaphors, as
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experiments, and a third middle mode.  The view of simulations as metaphors, while perhaps

never expressed clearly as such, nonetheless holds that simulations are essentially just brute-force

number crunching procedures, used when analytic techniques are impossible–in other words, a

degenerate form of theorizing.  The view that simulations are experiments, and the computer is

an experimental target, holds that there is some mimetic relation between the simulation and the

simulated, such that the simulation can mimic the real and act as a stand-in.  The third mode

holds that simulations are an entirely different kind of thing, lying somewhere between theorizing

and experiment.

Winsberg is careful to distinguish between simulations in which analytic solutions

produce closed form expressions, and simulations which use numerical methods that produce a

“big pile of numbers” that require the usual tools of experimental practice to analyze:

visualization, statistics, data mining, etc. (Winsberg 2003, p. 111).  The difference is not merely

one of the mimetic qualities of the mathematics, but of the practices which scientists use to

engage and work with the models.  The numerical methods are more like experiments than

theories because the same practices are used to study them as are used in experimental

investigations.  

In the terms I have used to describe working models, these synthetic numerical

simulations are used to generate, or synthesize, phenomena which are to be investigated,

explored, experimented on, etc.–they are themselves objects of empirical study.  This is in

contrast to the theoretical models, or simulations based on tractable equations deduced from

theory, which lend themselves to straightforward mathematical analysis.  In these analytic

simulations one does not need to employ the data analysis techniques of experimental practice to

discern the structures and patterns in the phenomena–these models only produce data as an

instantiation of the theory for a given case, and the desired results are easily derived from the

equations.  This distinction also corresponds nicely to an analytic/synthetic distinction.  Here the

analytic simulations engage in deriving local models from general theories in a formal way,

whereas the synthetic simulations seek to fill in the gaps of missing theory and data by generating

something new that can be manipulated, experimented on, and used to generate data on which to

devise and test theories.
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Much of the philosophical literature on simulations appears to Winsberg to be hung up on

visualization as a key aspect of what makes simulations interesting.  This is captured in the

notion of the mimetic qualities in the simulation’s representations (Hughes 1997).  Like

isomorphism, mimetic relations are meant to provide an objective way of expressing the precise

relations between the real and the simulated systems, but mimetic relations have the added

requirement of preserving the graphical aspects of the original:

The extensive use of realistic images in simulation is a stepping stone that simulationists
use in order to make inferences from their data.  It is also a tool they use in order to draw
comparisons between simulation results and real systems; a move that is part of the
process of sanctioning of their results.  It is the drawing of inferences and sanctioning of
results that give rise to the interesting philosophical connections between simulation and
experimental practice. (Winsberg 2003, p. 113).

Certainly the graphical aspects of such models can provide a means to the employment of visual

laboratory practices, but it is not the only such aspect, and it is not essential.  As Winsberg notes,

it is possible to derive visualizations from many mathematical models, and this appears

tangential to what makes them good models.  Further, if one puts too much faith in the power of

the mimetic features, it tends to lead one to see simulations as purely and truly experimental,

taking literally the notion of the “numerical experiment” and interpreting the computer

simulation as a stand-in for the real phenomena.  This begs the question of just how well a

simulation mimics the real phenomena (Winsberg 2003, p. 115).  That is, it matters not just that

it “stands-in” in some respects, but in which respects, to what extent and to what precision and

accuracy.  Particularly if we are interested in the epistemic status of models and simulations,

these questions are of great importance, and we cannot take for granted that because we can

perform experiments on simulations, this implies that they have the same epistemic, much less

metaphysical, status as real experiments.  Still, it does not mean that they completely lack

epistemic status, or that they are metaphysically weak or unreal, either.

In considering that simulation might be a unique new mode of scientific practice between

theorizing and experimenting, Winsberg asserts that this is merely a good place to start thinking

about simulation, not an explanation of it:

What is of interest philosophically is to understand (a) how it is that what is at root a
theoretical enterprise, takes on characteristics of experimentation, (b) what those
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characteristics are–at the abstract, reconstructed level, (c) what consequences there are of
such a hybrid for our understanding of the nature of modeling, theorizing, and
experimenting, and (d) how simulation produces knowledge and what kind of knowledge
that is. (Winsberg 2003, p. 118)

In staking out this middle ground for simulation, Winsberg is careful to note that the techniques

and practices of modeling can carry their own epistemic credentials, independently of the theory

from which they are produced:

[T]he credibility of [a] model comes not only from the credentials supplied to it by the
governing theory, but also from the antecedently established credentials of the model
building techniques developed over an extended tradition of employment.  That is what I
mean when I say that these techniques have their own life; they carry with them their own
history of prior successes and accomplishments, and, when properly used, they can bring
to the table independent warrant for belief in the models that they are used to build.
(Winsberg 2003, p. 122)

Thus, it seems that for Winsberg the epistemic basis for simulations comes from both theory and

the practices of modeling.  It is important to note, however, that he also holds that those

simulations are only autonomous (or semi-autonomous as he says) from theory to the extent that

they have these independent epistemic foundations rooted in a tradition of practice.  I agree with

this approach, and only wish to add that working models are also produced in and support the

development of a tradition of modeling practices.

Before discussing the early attempts at using the computer to simulate the mind and brain,

I want to consider one more position on simulation that considers more explicitly how a model

represents the system it models.  During the Connectionist debates of the early 1990s, there was a

recurring argumentative theme based on the distinction between analog and digital computation. 

Perhaps too much was made of this distinction, or rather, the real nature of the distinction was

not always fully recognized.  An exception to this is Trenholme (1994).  Developing a line of

thought connecting the ideas of Kenneth J. W. Craik, Norbert Wiener, Philip Johnson-Laird and

Rodney Brooks, Trenholme presents a view of simulation that I believe is compatible with the

idea of a working model.  It is my hope that applying his view to the work of von Neumann and

Turing on the early computers will provide a new perspective on how the computer was variously

conceived of as a simulation of the brain and mind.  

In short, the idea is that while all synthetic simulations are working models in the generic



I will simply call these “analog simulations,” but will be careful to distinguish them from analog
3

representations and analog computations, as is necessary.  
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sense of being automatic, just as all models are “representational” in a generic sense, the nature

of the scientifically relevant aspect of their being models can differ in significant ways.  An

analog simulation directly models a natural system, while a symbolic simulation employs an

intermediate symbolic system and is thus an indirect model.  This level of indirection is highly

significant to the extent that it shifts the relevant aspect of a simulation from the realm of

working models, epistemic artifacts and material agency, to the realm of theoretical models and

normative disciplinary agency.  Thus, what Trenholme calls a naturalistic analog simulation is

what I have been calling a working model, and what he calls a symbolic simulation is a special

kind of theoretical model, one whose disciplinary agency has been transferred from human hands

and minds to automatic computations. 

Trenholme’s argument begins with a clarification.  While much of the debate at the time

was couched in terms of “analog vs. digital” computation, Trenholme is careful to point out that

the real issue is “analog vs. symbolic” representation.  As we will see in the discussion of von

Neumann’s automata theory below, “analog vs. digital” is a matter of how numbers are

represented in a computer.  It says nothing, however, about what or how those numbers come to

represent or simulate anything else beyond themselves.  The real issue is whether numbers are an

essential part of the simulation at all.  Hence, the “analog vs. symbolic” dichotomy is meant to

capture the notion that analog simulations do not require or depend upon symbolic

representations.  Rather, they serve as simulations, primarily or completely, in virtue of their

causal structure.  Trenholme calls these “naturalistic analog simulations” in order to distinguish

them from the more careless definitions of analog computation. 

Trenholme goes on to argue that naturalistic analog simulations  are not representational3

in the same sense that symbolic simulations are representational.  This is due to an additional

“mapping” in the sense that there are multiple levels of representation involved.  In short, analog

simulations relate the causal structure of a natural phenomenon to the causal structure of the

simulation by isomorphism–actually the looser “similarity” relation is appealed to (along with a

probabilistic causal theory).  A symbolic simulation, on the other hand, is derived, or mapped,
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from a formal theory of a natural phenomena, and then this is mapped into a computational

simulation of the formal theory.  Missing from the symbolic simulation is the obvious sense of an

isomorphism between causal structures.  Symbolic simulations are instead representational in the

sense of semantic relations like denotation.  Analog simulations lack this purely representational

layer:

Symbolic simulation is thus a two-stage affair: first the mapping of inference structure of
the theory onto hardware states which defines symbolic computation; second, the
mapping of inference structure of the theory onto hardware states which (under
appropriate conditions) qualifies the processing as a symbolic simulation.  Analog
simulation, in contrast, is defined by a single mapping from causal relations among
elements of the simulation to causal relations among elements of the simulated
phenomenon. (Trenholme 1994, p.119).

While a symbolic simulation depends on causal structures at some level, it is the symbolic level

that is crucial to its successful performance as a simulation.  Similarly, while an analog

simulation depends on representation at some level, it is the causal structure, or material agency,

which is operative in its performing as a simulation.  There is a generic sense of representation

involved in both types of simulation, i.e. that the simulation is in some sense a representation of

the system being simulated, but the kind of representation involved is not necessarily symbolic

representation.  

For instance, the mercury barometer “represents” air pressure without employing

symbolic systems in its performance–the symbols only come at the end, as it were, when the

result is read off from the markings on the device.  Rather than depend upon the symbolic

relations to achieve a well behaved simulation, analog simulations depend upon causal structures. 

These causal structures are the material agency of working models.  On the one hand these causal

structures must be constrained in specific ways so as to constitute a valid simulation (they are

disciplined material agencies), while on the other hand there are always ways in which they are

unconstrained and open-ended to the extent that they are involved in the potentially infinite

causal relations of the world and can always exhibit new emergent properties.  There is thus an

implicit respect for this dual aspect of material agency in analog simulations that is largely

missing in symbolic representations that attempt to completely constrain the behavior of the

physical system to produce only the precise symbolic system that is intended.  When a symbolic



For instance, the kind of argument made by Searle (1980) in his famous Chinese-room thought experiment
4

turns on just these semantic aspects of symbols.  In that argument, he aims to show that intentionality is an essential

element of symbolic representation and that Computationalism, or at least that the strong program in AI fails to

explain it.
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simulation behaves irregularly, its output is essentially meaningless.

Symbolic representation is a very specific form of representation in which symbols are

made to represent through denotation and reference.  Symbols alone do not have a causal

structure, and in order to make an automatic simulation based on them, it is necessary to have

what Newell and Simon call a “physical symbol-system,” i.e. a computer:

The Physical Symbol System Hypothesis.  A physical symbol system has the necessary
and sufficient means for general intelligent action.  By ‘necessary’ we mean that any
system that exhibits general intelligence will prove upon analysis to be a physical symbol
system.  By ‘sufficient’ we mean that any physical symbol system of sufficient size can be
organized further to exhibit general intelligence (Newell & Simon 1976, p. 41).

Simulations based upon symbolic representations are so closely tied to the development of the

modern computer that they are often simply called “computer simulations.”  There are other

expressions which evoke notions of modeling and simulation, but actually serve to confuse the

issue:

Certain ways of speaking–for example, saying that a theory is “modeled on a
computer”–risk conflating the two mappings, thus blurring the distinction between analog
and symbolic simulation, as does the notion of representation when applied to analog
simulations. . . . Thus we may say that a user (or an observer) recognizes an analog
simulation as such when properties in the analog device are held to represent the
corresponding properties (those that play the corresponding causal role under the causal-
structural isomorphism).  In the case of symbolic simulation, once the user identifies the
phenomenon to be simulated, the term of the theory coded into the computer may be held
to represent the relevant features of the phenomenon under its standard (intended)
interpretation; here the notion of representation stands for language-world semantical
relations such as reference and denotation.  An obvious distinction can be made between
these semantical relations and the notion of isomorphism of causal structure used in
characterizing naturalistic analog simulation. (Trenholme 1994, p.119).

Once the distinction between analog and symbolic representation is clear, one can begin to see

how this argument relates to the larger questions concerning Computationalism.  4

It is worth noting at this point that there are at least two significantly different ways to



I use isomorphism here not in its strict sense of correspondence, but rather in the looser sense of similarity
5

proposed by Teller (2001).

For black box simulations, we do not care about internal processes so it makes little difference whether
6

these are achieved symbolically or causally, or even magically.
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elaborate the isomorphism  between a simulation and the system or process it simulates.  One is5

the simple input/output correspondence, or what Ashby first called the “black box” simulation. 

Under this view, one system is a black box simulation of another if it produces similar outputs

under similar inputs.  In the case of analog simulations, the inputs and outputs are causal, in

symbolic simulations they are symbolic.  The matter is more complicated in the second type of

isomorphism in which the internal processes of the simulation and the system or process being

simulated are meant to correspond.  In this form of simulation not only do the input/output

relations matter, but also the internal states and processes of the simulation.  The difference

between analog and symbolic simulations is made clearer in such cases.   While symbolic6

simulations must realize certain symbolic processes, there is an independence between the

symbolic processes and their physical realization.  This is generally referred to as “multiple

realizability” meaning that different causal systems can realize the same symbolic process.  For

analog simulations, which lack an independent symbolic level, the causal processes that realize

the simulation must be isomorphic to the system being simulated for it to count as a simulation. 

Let us now turn from this abstract discussion of simulation to some more concrete historical

examples.  We will see in the ideas of von Neumann and Turing two different kinds of symbolic

simulation.  For von Neumann, the computer ought to be used to simulate a physical model of the

brain, while for Turing the computer ought to simulate the same essential algorithm, or program,

that the brain itself simulates.

3. Analogies, Digits and Numbers

The distinction between analog and digital is due to John von Neumann (Aspray 1990). 

His work on the first stored-program computers and views on the relationship between the

computer and the brain present a complex history involving numerous layers of analogy,

modeling and simulation.  A complete accounting of the development of his thought is well
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beyond the scope of the present essay, but it is worthwhile to consider how the view of working

models and simulations would apply to his various stated positions.  It is clear that his design of

the first computer memory drew heavily upon his review of research in neurophysiology, and

quite explicitly upon the work of McCulloch and Pitts (1943) and their conception of logical

neural networks.  This much is clear from his EDVAC design proposal (von Neumann 1945). 

The story becomes more complex when we consider his 1948 theory of automata (von Neumann

1951), his 1946 letter to Norbert Wiener about simulating the brain (von Neumann 1946), and his

later reflections on the relationship between the brain and the computer for his posthumously

published Silliman lectures (von Neumann 1958).  In this section I will briefly review some of

von Neumann’s thoughts on the issues involved in thinking about the computer as being modeled

after the brain, and his approach to simulating the brain with a computer.

The key to understanding the development of von Neumann’s ideas on the relationship

between the brain and the computer is to keep clear that the computer is a representational system

of a specific type for von Neumann.  In the case of his automata theory, the computer is

fundamentally an automatic system for representing and manipulating numbers.  Numbers are not

the same thing as quantities or numerals–they are abstract mathematical entities.  Quantities and

numerals are concrete ways of representing numbers for practical purposes.  Thus, to automate

mathematics it is necessary to develop a physical system which can represent numbers, and the

choice between quantities and numerals is an open question before the technological possibilities

are considered.

On September 20, 1948, von Neumann presented a theory of automata at the Hixon

Symposium on Cerebral Mechanisms in Behavior (von Neumann 1951).  In his presentation,

“The General and Logical Theory of Automata,” he spells out the need he saw for a rigorous

theory of computation, and outlines a formal theory of automata (axiomatically idealized

computational mechanisms). He began by distinguishing two general classes of automata by

their mode of representing numbers.  The class of automata built on the “analogy principle”

represent numbers by analogy; that is, through certain physical quantities that they exhibit in the

way that a thermometer represents temperature by the height of its mercury.  If, for example, we

are representing two numbers by the electrical currents in two circuits, we can add the numbers
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by combining the circuits appropriately and the result will be registered as the total current output

from the combined circuit.  It is possible to do all the basic arithmetic operations (+, -, *,÷) in

roughly this way by using the currents in a circuit and providing the appropriate configurations of

the circuit’s relays and switches.  Automata built on the “digital principle” do not represent

numbers as physical quantities, but as aggregates of numerical digits in the manner humans

typically do when we write them down on paper or count on our fingers (the etymological origin

of “digit” itself).  Such an automata might have a dial with ten positions on it representing 0-9, or

a series of such dials for the ones column, tens column, hundreds column, etc., of the decimal

numbering system.  The digital representation used by nearly all modern computers is a binary

system in which wires carry electrical currents of two sufficiently distinct magnitudes, and

employ a set of canonical circuits to perform mathematical and logical operations on the binary

representations.

The two types of automata described by von Neumann correspond to Trenholme’s (1994)

“analog vs. digital” distinction, though Trenholme criticizes it as being spurious in distinguishing

between types of simulation.  That is, in each case one is seeking to represent numbers and,

unless one is seeking to “simulate” pure mathematics, both are forms of symbolic simulations

and are caught up in a double-mapping.  This is because even if we might be using an analog

computer, such as a differential analyzer, we still need a theory about how the causal structure of

the analog computer realizes the desired mathematical calculations, as well as a theory about how

those calculations relate to the natural phenomena in question.  This is just to say that a

differential analyzer is not a simulation, e.g. of some hydrodynamic system, but an automated

device for solving a set of equations derived from a theory of that hydrodynamic system.

The main consequence of the different kinds of numerical representation in automata are

the practical realization of them when building electronic computers.  Analog computers are

deeply susceptible to errors by the constant introduction of noise into their circuits, though they

have the advantage of arbitrarily high precision.  That is, when dividing, as when dividing “5” by

“7”, the result cannot be expressed in a finite number of digits and so a digital computer’s answer

will be limited by the number of digits it can represent at one time, while an analog computer can



Computer programmers call this a “truncation” error–when the number of digits needed for an answer
7

exceeds the number the machine can represent.  In division, this generally results in a truncation or rounding-off of

the decimal positions after the last available digit is used.  Consider a machine multiplying two 10-digit numbers, and

capable of only representing 10 digits at a time.  The result of the multiplication will be at least 18 digits long, but

the machine can only represent half of these, and hence can not represent a meaningful answer at all–or must convert

it to scientific notation, truncate it and thereby lose precision.
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represent the answer to an unlimited precision.   The down side is that this is only an ideal, in7

actuality it was quite difficult to get analog circuits to perform calculations with much accuracy

because slight fluctuations in the physical quantities, due to sources outside the computation,

build up as noise in the system.  Consequently, while our analog division of “5” by “7” might be

perfectly precise in theory, even low probabilities of very small disturbances in the current of the

circuit will limit the actual precision enormously.  Von Neumann insisted that it is the difficulty

of the engineering problem of maintaining a reliable signal-to-noise ratio that prevents the analog

computer from being made more precise than a few decimal places, and it just so happens that

this problem does not arise in digital machines–which have the further advantage that precision

can be increased indefinitely and economically by simply increasing the number of digits

represented by duplicating components.

While this point is often overlooked, von Neumann himself claims there is no essential

mathematical difference between the two kinds of automata, though there are great practical

differences.  Primarily, any kind of calculation that can, in principle, be done on an analog

automata can also be done on a digital automata and vice versa.  Von Neumann argues that

organisms, natural automata, are actually mixed automata utilizing both principles for different

particular functions, and that high speed computers are strictly digital machines.  He is careful to

point out that trying to base a theory of mind on the kinds of computations achievable in digital

computers should not affect its applicability to the living brain since neuronal activity had been

shown to be digital and, even if it were not, the theory could be realized by an appropriately

constructed analog machine anyway.  In other words, a computational simulation of the brain

will be a symbolic simulation, as long as that simulation depends on the computation of

theoretical models, regardless of whether an analog or digital computer is used.

4. Modeling the Computer on the Brain



The early computing machines were either highly specialized to perform a single class of functions or, like
8

ENIAC, had to be programmed manually by arranging walls of dials and networks of patch cables in a fashion

similar to hand-operated switchboards for telephones.  For instance, Howard Aiken’s Mark I Automatic Controlled

Sequence Calculator, built for IBM in 1944, used 72 rotary counters for storing numbers mechanically, but had no

means for storing the calculation instructions themselves–the “function” resided in the mechanical configuration of

the device.
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These repeated excursions into biological information processing and the
interdisciplinary study of cybernetics have been ignored in previous accounts of von
Neumann’s computing, yet they clearly shaped his ideas. (Aspray 1990, p. 189).

This section will be a digression from our discussion of simulations.  It is relevant,

however, to the extent that it considers the practice of “modeling” in the development of the

computer as a machine.  In particular, it tells the story of how the computer was modeled on the

brain, or at least upon certain specific theories of how the brain and its neurons work.  There was

something more than numerical representation required for the stored-program computer to

become a technological reality.  Namely, the stored-program computer would need to represent

its own instructions as numbers, which it could then store in memory, retrieve, execute, alter, etc. 

In other words, certain numbers are representations to the computer of instructions it is meant to

interpret and perform.  This was the great leap in design that turned mere calculators into

universal computers.  It is also the kernel of a deep confusion regarding the representational

character of computations.  This kernel was fertilized early on by the connections drawn between

computational memory and neural structures in the brain.  What is clear from von Neumann’s

description of the EDVAC design is that he looked to the brain and to the McCulloch and Pitts

neuron for inspiration in the design of the first computer memory.  This led to a peculiar kind of

analogy between the computer and the mind/brain which the proponents of Computationalism

would soon embrace, but which von Neumann himself would ultimately reject.

While various electromechanical calculators had been constructed before, during, and

after World War II, the principle technological impediment to creating a general purpose

computer (i.e. a working Universal Turing Machine) was with how to give it a memory.   The8

problem was one of both organization and technological realization.  It is generally held that the

first machine to solve the memory problem was von Neumann’s Institute for Advanced Study

machine.  Von Neumann solved the problem by introducing a memory unit, or “organ” as he
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called it, as a central part of the computer architecture.  The memory organ was distinguished

from numerical counters by its representing, or storing, logical instructions, or “codes,” as well as

numbers.  It thus became possible for the computer to calculate partial solutions, store the

intermediate results, reconfigure itself to perform a new function by following the instructions in

memory, and resume the calculation with the instructions stored in memory as numbers

(Goldstine & von Neumann 1946).  This had obvious advantages over having to reconfigure the

machine by hand for each portion of a calculation, or having to build a computer complicated

enough to be completely preprogrammed for all the steps necessary in a computationally

demanding problem.

An often overlooked fact about this early computer design is the extent to which von

Neumann drew upon the McCulloch and Pitts neuron model and the neurological language he

used to describe the new design.  This is a clear case of modeling on–the transfer of a theory in

one domain to the design of a technology in another domain.  The fact that von Neumann

modeled his design after neurophysiological theory and the McCulloch and Pitts neuron is

unmistakable in the language he uses to describe the computer:

The three specific parts CA [Central Arithmetical organ], CC [Central Control organ],
and M [Memory organ] correspond to the associative neurons in the human nervous
system.  It remains to discuss the equivalents of the sensory or afferent and the motor or
efferent neurons.  These are the input and the output organs of the device, and we shall
now consider them briefly. (von Neumann 1945, p. 20, original emphasis)

The most obvious thing to note about this passage is that he does not refer to the parts of the

computer’s architecture as “units,” “components,” “modules,” or any other such connotatively

neutral engineering terms.  As a mathematician, he chose the semantically loaded term “organs”

taken from the description of biological systems.  Moreover, these are explicitly made out as

corresponding to specific elements in the human brain.  This theme is carried through his

description of the machine:

It is worth mentioning, that the neurons of the higher animals are definitely elements in
the above sense.  They have all-or-none character, that is two states: Quiescent and
excited.  They fulfill the requirements of [section] 4.1 with an interesting variant: An
excited neuron emits the standard stimulus along many lines (axons).  Such a line can,
however, be connected in two different ways to the next neuron: First: In an excitatory
synapsis, so that the stimulus causes the excitation of that neuron.  Second: In an
inhibitory synapsis, so that the stimulus absolutely prevents the excitation of the neuron
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by any other (excitatory) synapsis.  The neuron also has a definite reaction time, between
the reception of a stimulus and the emission of the stimuli caused by it, the synaptic
delay.  Following W. Pitts and W. S. MacCulloch [sic] (“A logical calculus of the ideas
immanent in nervous activity,” Bull. Math. Biophysics, vol. 5 [1943], pp. 115-133.) We
ignore the more complicated aspects of neuron functioning: Thresholds, temporal
summation, relative inhibition, changes of the threshold by after effects of stimulation
beyond synaptic delay, etc.  It is, however, convenient to consider occasionally neurons
with fixed thresholds 2 and 3, that is neurons which can be excited only by
(simultaneous) stimuli on 2 or 3 excitatory synapses (and none on an inhibitory synapsis). 
It is easily seen, that these simplified neuron functions can be imitated by telegraph relays
or by vacuum tubes.  Although the nervous system is presumably asynchronous (for the
synaptic delays), precise synaptic delays can be obtained by using synchronous setups.
(von Neumann 1945, p. 24)

In this passage, it is clear that von Neumann is making a serious consideration of the structure

and function of biological neurons, albeit idealized in the manner of McCulloch and Pitts’ neuron

model.  Here we see how the functional identity of neuron activity and mathematical logic (a

unification of neural mechanisms and Turing machines) is being used as a modeling tool in the

design of the electronic computer.  Its usefulness as a model is metaphorical or analogical, to be

sure, but this kind of model is powerful in that it actually influences design decisions, and not

merely the construction of design alternatives.  In that sense it is evaluative or normative:

The analogs of human neurons, discussed in 4.2-4.3 and again referred to at the end of
5.1, seem to provide elements of just the kind postulated at the end of 6.1.  We propose to
use them accordingly for the purpose described there: as the constituent elements of the
device, for the duration of the preliminary discussion.  We must therefore give a precise
account of the properties which we postulate for these elements. (von Neumann 1945, p.
30).

But this model was not the only criteria operative in design decisions:

At this point the following observation is necessary.  In the human nervous system the
conduction times along the lines (axons) can be longer than the synaptic delays, hence our
above procedure of neglecting them aside of t would be unsound.  In the actually intended
vacuum tube interpretation, however, this procedure is justified: t is to be about a
microsecond, an electro-magnetic impulse travels in this time 300 meters, and as the lines
are likely to be short compared to this, the conduction times may indeed be neglected.
(von Neumann 1945, p. 30)

It seems clear enough from these passages that von Neumann’s conception of physical

computation was almost completely circumscribed by the McCulloch and Pitts neuron model.



Page 19 of  33

What conclusions can be drawn from these observations of the significance of the

McCulloch and Pitts’ neuron model on the design of the first computers?  The first point is that

the computer was from its very conception a kind of model of the brain.  Thus, it is at least

mistaken to think that researchers in Artificial Intelligence or Cognitive Science “discovered”

any analogy between the mind and computer.  It was always there.  Rather, they reconfiguring

this analogy in an effort to develop an analogy between computer programs and psychological

theories.  One way of approaching the question of Computationalism might be to ask whether the

computer itself, regardless of the program or simulation it is performing, is a model of the mind,

or a good model of the mind.  It obviously could be, and has been, such a model.  This leaves

open the question of whether the mind actually is a computer, or a computer a mind, however. 

But almost no one holds the view that every computer is a mind–even strong AI holds that the

computer must be properly programmed.  Turing seems to have held the view that minds are

Universal Computers, and perhaps also the converse, that Universal Computers are at least

capable of being minds.  We will consider his views shortly.  First we will consider whether there

might be some way for the computer to simulate the brain so efficiently that it becomes a mind.

5. Simulating the Brain on the Computer

It is worth considering at this point how von Neumann envisioned the computer as a

simulation of the brain.  Even while von Neumann had based his automata theory on a strict

distinction between analog and digital numerical representation, and modeled the memory of the

stored-program computer after McCulloch and Pitts’ essentially digital model of neurons, he was

clear in other writings that the brain itself was actually much more complicated than these

theoretical idealizations let on.  As a result, the simulation of the brain by a computer would be

far more elusive.

On November 29 ,  1946, just after the second Macy Conference, von Neumann wrote ath

letter to the mathematician and cybernetician Norbert Wiener in which he assessed the situation

regarding the theory of biological information processing, and the replication of the brain’s

abilities in a computer.  The letter is interesting for a number of reasons, and warrants more

thorough examination than our current purposes permit.  Despite his early enthusiasm, von
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Neumann was perhaps the first to realize the limitations of computers for simulating the brain. 

The clearest articulation of the shortcomings of this approach comes in his letter to Wiener.  Here

von Neumann argues that directly modeling the physical structure of the brain will be so

complicated as to be nearly hopeless, an idea he would more clearly express in later work.  He

concludes from this situation that a much better approach would be to turn instead to detailed

cytological work.  Specifically, he proposed to understand simple organisms in complete atomic

detail (literally), by starting with the study of bacteriophagic viruses.

In the letter von Neumann intimates one of the primary reasons for the difficulty in

making the analogy between brains and computers: 

Besides, the [brain] system is not even digital (i.e. neural): It is intimately connected to a
very complex analogy; (i.e. humoral or hormonal) system, and almost every feedback
loop goes through both sectors.  If not through the “outside” world (i.e. the epidermis or
within the digestive system) as well. (von Neumann 1946, p. 507)

There are two important points to note in this passage.  First, von Neumann is keenly aware of

the embedded and situated nature of the human brain, and that its information processing relies

essentially on feedback loops with its environment.  Unfortunately, von Neumann does not direct

his energies in pursuing this issue.  The other point is that the supposedly neat distinction

between analog and digital is not so clear in the living brain and this is the direction in which von

Neumann devotes a great deal of his energy.

One significant consequence of the McCulloch and Pitts’ neuron model was to establish

the digital character of neuronal behavior in the brain as the character relevant for understanding

its organization.  While this move had great benefits in terms of formalizing neural networks, and

thereby treating them using mathematical logic, the idealization was ultimately a gross

simplification.  Von Neumann states the case most devastatingly in his Silliman manuscript.  In

one passage, he assails the notion that it is safe to treat the mechanism of neuronal excitation and

inhibition as a straightforward summation function:

It may well be that certain nerve pulse combinations will stimulate a given neuron not
simply by virtue of their number, but also by virtue of the spatial relations of the synapses
on a single nerve cell, and the combinations of stimulations on these that are effective
(that generate a response pulse in the last-mentioned neuron) are characterized not only
by their number but also by their coverage of certain special regions on that neuron (on its
body or its dendrite system, cf. above), by the spatial relations of such regions to each
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other, and by even more complicated quantitative and geometrical relationships that
might be relevant. (von Neumann 1958, p. 54-55)

While it might be tempting to treat things as if all inputs to a neuron were equal, in fact the

complex three-dimension geometry of the synaptic connections to the neuron’s dendrites are

relevant to the electro-chemical processes which trigger a pulse.  Similarly, the ideal of the

synchronous timing of neuronal activity, essential to McCulloch and Pitts assertion that multi-

layered networks can be treated as equivalent to logical propositions, is also untrue:

On all these matters certain (more or less incomplete) bodies of observation exist, and
they all indicate that the individual neuron may be–at least in suitable special situations–a
much more complicated mechanism than the dogmatic description in terms of stimulus-
response, following the simple patterns of elementary logical operations, can express.
(von Neumann 1958, p. 56)

So while he found the suggestions of treating neurons as logical units performing summations

useful for designing computer memory circuits, he was deeply disturbed by just how remote this

idealization was from real brains when it came to building a simulation.

Not only were the neurons clearly not performing the idealized functions required by

McCulloch and Pitts, even von Neumann’s own distinctions between analog and digital automata

applied to the brain in complex, and by no means straightforward, ways:

The observation I wish to make is this: processes which go through the nervous system
may, as I pointed out before, change their character from digital to analog, and back to
digital, etc., repeatedly.  Nerve pulses, i.e. the digital part of the mechanism, may control
a particular stage of such a process, e.g. the contraction of a specific muscle or the
secretion of a specific chemical.  This phenomenon is one belonging to the analog class,
but it may be the origin of a train of nerve pulses which are due to its being sensed by
suitable inner receptors.  When such nerve pulses are being generated, we are back in the
digital line of progression again.  As mentioned above, such changes from a digital
process to an analog one, and back again to a digital one, may alternate several times. 
Thus the nerve-pulse part of the system, which is digital, and the one involving chemical
changes or mechanical distortions due to muscular contractions, which is of the analog
type, may, by alternating with each other, give any particular process a mixed character.
(von Neumann 1958, p. 68-69)

Ultimately, these complexities led von Neumann to believe that the study of the brain would lead

to a new mathematics.

Von Neumann begins the letter to Wiener with a devastating critique of his own work, as

well as that of Wiener, Turing, McCulloch and Pitts, to formulate a substantive theory of
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information processing in the brain:

Our thoughts–I mean yours and Pitts’ and mine–were so mainly focused on the subject of
neurology, and more specifically on the human nervous system and there primarily on the
central nervous system.  Thus, in trying to understand the function of automata and the
general principles governing them, we selected for prompt action the most complicated
object under the sun–literally. . . . The difficulties are almost too obvious to mention:
They reside in the exceptional complexity of the human nervous system, and indeed of
any nervous system.  (von Neumann 1946, pp. 506-7)

From this passage it is clear that von Neumann recognized that the lack of formalized scientific

understanding of the operation of the neurons was a major hurdle to constructing synthetic brains

with artificial automata.  The consequence of his efforts in clarifying these ideas over the course

of several years was one of exasperation:

What seems worth emphasizing to me is, however, that after the great positive
contribution of Turing-cum-Pitts-and-McCulloch is assimilated, the situation is rather
worse than better than before.  Indeed, these authors have demonstrated in absolute and
hopeless generality, that anything and everything Brouwerian can be done by an
appropriate mechanism and specifically by a neural mechanism–and that even one,
definite mechanism can be “universal.”  (von Neumann 1946, p. 507)

This is perhaps the most devastating critique of Turing’s project offered before the rise of AI. It

is also the clearest statement of the paradoxical relationship between the universal computer and

the synthetic brain, which we will consider in the next section.  The critique is this: the universal

computer, and its equation with the functioning of the brain is at the same time infinitely potent,

yet essentially flaccid.  The “absolute and hopeless generality” of the theory is that while it could

replicate the processes of mind, if those are formally definable (Brouwerian), it gives absolutely

no insight into the nature, structure or organization of those processes.  The universal computer

can imitate any machine, and thus the brain-machine, but this tells us nothing about brains.  What

is needed instead is a rigorous theory of the biological brain:

Inverting the argument: Nothing that we may know or learn about the functioning of the
organism can give, without “microscopic,” cytological work any clues regarding the
further details of the neural mechanism.  (von Neumann 1946, p. 507)

Ultimately, the study of neural networks in the abstract leaves us with the fundamental problem

of understanding the brain empirically.  And so the simulation of the brain on the computer is

limited by our theoretical understanding of neuroscience.  This should not be so surprising when

we recognize von Neumann’s approach to brain simulation as a form of symbolic simulation, and
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hence a theoretical simulation.  That is to say, his notion of a computer simulation of the brain is

completely dependent on a theoretical model of the brain being mapped into a symbolic

representation on a computer.  It is thus a clear example of the alignment between the symbolic

simulation and the theoretical model.  We will now turn to a different conception of how the

computer can simulate the brain, which is nonetheless a symbolic simulation based on a

theoretical model.

6. Computer as Universal Modeling Machine

It is possible to invent a single machine which can be used to compute any computable
sequence. (Turing 1936, p.127)

Now that we have examined the complex relationship between the computer and the

brain in von Neumann’s work, we turn to the more straightforward, if more abstract, relationship

between the computer and the mind in Alan Turing’s work.  Put simply, Turing was preoccupied

with his idea of the Universal Machine (now called Universal Turing Machines or UTMs).  The

idea of the UTM, as described in Turing (1936), is that of an abstract formal computer which is

able to compute any computable function.  Elsewhere he refers to the ability of the UTM to

“model” any other machine.  This way of talking is of course circumscribed by our earlier

distinction between analog and symbolic simulation.  The UTM is a purely symbolic conception,

and real working computers are only approximations of this mathematical formalism.  Turing

did, however, seek to design and build real computers based on this formalism, most notably the

Advanced Computational Engine (ACE), and later the Mark I at Manchester (Carpenter and

Doran 1986).

In nearly every speech and paper related to computation that Turing produced from 1944-

1950, he cited the similarity between his UTM and a programmable digital computer as being

highly significant:

Some years ago I was researching on what might now be described as an investigation of
the theoretical possibilities and limitations of digital computing machines.  I considered a
type of machine which had a central mechanism, and an infinite memory which was
contained on an infinite tape.  This type of machine appeared to be sufficiently general. 
One of my conclusions was that the idea of a ‘rule of thumb’ process and a ‘machine
process’ were synonymous.  The expression ‘machine process’ of course means one
which could be carried out by the type of machine I was considering.  It was essential in
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these theoretical arguments that the memory should be infinite.  It can easily be shown
that otherwise the machine can only execute periodic operations.  Machines such as the
ACE may be regarded as practical versions of this same type of machine. There is at least
a very close analogy. (Turing 1947, p. 106-7)

It is clear from this passage and others that Turing sees universality as the critical element of

UTMs–it is their ability to model any other machine that is so remarkable.  The design of

computing machines was then to be modeled after the mathematical theory of UTMs–the only

difference in Turing’s mind between the mathematical formalism of UTMs and the physical

computer was the finite size of the memory, and the additional physical limitations of the

machine, such as time.  Apart from these practical constraints, Turing’s vision of the computer

might easily be called a “universal modeling machine.”

His focus on universal modeling was also central to his consideration of learning and

intelligence, and modeling these on a computer.  He cast the problem as being that of an

unorganized system becoming organized.  But rather than taking a thermodynamic interpretation

of organization, as the Cyberneticians would, Turing’s approach sought to show how

unorganized systems could efficiently organize themselves into UTMs through reinforcement by

pleasure and pain.

Turing applied the same conception of universal modeling machines to the human brain

as he did to the design of computers:

All of this suggests that the cortex of the infant is an unorganized machine, which can be
organized by suitable interfering training.  The organizing might result in the
modification of the machine into a universal machine or something like it.  This would
mean that the adult will obey orders given in appropriate language, even if they were very
complicated; he would have no common sense, and would obey the most ridiculous
orders unflinchingly.  When all his orders had been fulfilled he would sink into a
comatose state or perhaps obey some standing order, such as eating.  Creatures not unlike
this can be found, but most people behave quite differently under many circumstance. 
However, the resemblance to the universal machine is still very great, and suggests to us
that the step from the unorganized infant to a universal machine is one which should be
understood.  When this has been mastered we shall be in a much better position to
consider how the organizing process might have been modified to produce a more normal
type of mind. (Turing 1948, p. 16/120)

For Turing, it seems that the key to unlocking the secrets of the mind lay with the UTM.  For

him, the mind had the ability to model other machines, and was thereby a universal model of a
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particular sort, though perhaps not completely identical to the uncreative computer.

This approach to intelligence and mind can be safely contrasted to that of W. Ross Ashby,

who saw behavior not in terms of logical rule-following, but as trajectories in phase space.  He

sought to embody his ideas in machines which he could directly interact with, such as the

Homeostat, and later the DAMS.  Learning for Ashby was a never-ending dynamic process in

which the goal was survival, and the environment was continually changing.  Modeling was a

consequence of this, not necessarily the cause.  Turing saw learning as a search for a single stable

goal–the organized universal computer.  For Turing, it was the patterns of symbols in memory,

the symbolic “instruction tables” which held the secrets of the mind, while for Ashby, it was the

patterns of interactions and feedback loops between the system and its environment.  In both

cases, of course, it was possible to build a machine to embody their vision.  However, for Turing

this machine would epitomize the symbolic simulation of mind, while for Ashby the machine

would epitomize the analog simulation of mental behavior.  This contrast can be best understood

by considering their letters to one another.

7. Simulating the Homeostat

When Ashby returned from his service with the Royal Medical Corps in India in the

Spring of 1946, he had been concerned with the mechanisms of learning for over a decade and

had begun thinking about constructing a machine to demonstrate the principles he had concluded

to be essential to adaptation.  During that year his notebooks are filled with mathematical

formalisms for various stability-seeking systems.  These eventually turn to diagrams of simple,

and then more complex, electrical circuits to realize the behavior of a set of equations in a system

which could be directly engaged with manually (Ashby 1948, 1952, Asaro 2008).  

In the fall of 1946, Ashby wrote to Turing about the adaptive machine Ashby was

designing.   As with all other machines and processes, Turing believed that a programmable9

computer such as the ACE could model Ashby’s Homeostat, as he explained in his reply to

Ashby on November 20, 1946:

The ACE will be used, as you suggest, in the first instance in an entirely disciplined
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manner, similar to the action of the lower centres, although the reflexes will be extremely
complicated.  The disciplined action carries with it the disagreeable feature, which you
mentioned, that it will be entirely uncritical when anything goes wrong.  It will also be
necessarily devoid of anything that could be called originality.  There is, however, no
reason why the machine should always be used in such a manner: there is nothing in its
construction which obliges us to do so.  It would be quite possible for the machine to try
out variations of behaviour and accept or reject them in the manner you describe and I
have been hoping to make the machine do this.  This is possible because, without altering
the design of the machine itself, it can, in theory at any rate, be used as a model of any
other machine, by making it remember a suitable set of instructions.  The ACE is in fact,
analogous to the ‘universal machine’ described in my paper on computable numbers. This
theoretical possibility is attainable in practice, in all reasonable cases, at worst at the
expense of operating slightly slower than a machine specially designed for the purpose in
question.  Thus, although the brain may in fact operate by changing its neuron circuits by
the growth of axons and dendrites, we could nevertheless make a model, within the ACE,
in which this possibility was allowed for, but in which the actual construction of the ACE
did not alter, but only the remembered data, describing the mode of behaviour applicable
at any time.  I feel that you would be well advised to take advantage of this principle, and
do your experiments on the ACE, instead of building a special machine.  (Turing 1946).

This letter did not stop Ashby from pursuing his own machine and, in fact, it was shortly after he

received this letter that he came up with one of the basic elements of the Homeostat circuit.  The

difference of perspective and approach between Ashby and Turing can now be made more clear. 

Of particular interest is his insistence that the universal character of the ACE meant that there

was no point in building a special machine of the type Ashby was proposing, even while he

admitted the importance of learning to intelligent behavior in general.  There is also a tension

between the rigid determined behavior of the ACE and the adaptive behavior of the brain. 

Considering how the ACE could model the Homeostat will bring into focus the differences

between analog and symbolic computation.

While Turing’s letter seems to move casually from talking about the ACE modeling the

brain to talking about the ACE modeling the Homeostat, we should pause to consider the

difference.  This difference is the essence of the analog and symbolic distinction insofar as

Turing does not believe that the unprogrammed computer is a model of the brain.  This is

because it is too rigid and disciplined to be brain-like, though it has some resemblance to the

“lower centres.”  What is required are the proper instruction tables, the program that defines the

machine of the brain.  And while Turing has some idea that this might be based on conditioned
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behavior, he has little idea how to program his machine to behave in this way.  That is to say, the

ACE might be able to perform a symbolic simulation of the brain, but only if it is given the

proper symbolic organization.  Ashby’s Homeostat is itself a model of the brain, however.  It is

such a model because of its causal structure, not because of its symbolic structure.  What Turing

sees in the Homeostat, however, is the potential to model the brain indirectly.  Because the

Homeostat is a machine whose design is understood, it should be possible to simulate it

symbolically on the ACE.  Because the Homeostat is a simulated brain, the ACE’s simulation of

the Homeostat would be a simulation of the brain (once removed).  The level of indirection in

this case is the Homeostat itself as a theory of the brain’s adaptive behavior.  Any simulation

performed by the ACE will only be as good as the theory upon which it is based.  It tells us

something about the Homeostat, and only indirectly tells us something about the brain.  But we

may still wonder what advantages there are to the directness we get from the analog simulation

provided by the Homeostat.  There are various reasons why the analog Homeostat is a better

model of the brain than the symbolic Homeostat simulated by the ACE.  First there are the

practical issues which Ashby and Turing faced.  Then there are methodological issues of

scientific practice.  And finally there is the issue of the effectiveness of the two simulations as a

demonstrations.  It is to these questions that I now turn.

First is the question of the practicality of building each simulation.  As it turned out, the

Homeostat was far easier to build than the ACE.  Pilot ACE would not become fully operational

until May of 1950, two years after the Homeostat was demonstrated to the EEG Society in

Bristol (von Neumann’s machine was not fully operational until 1952, though this was due more

to its parts being continually redesigned).  In addition, the Homeostat was a far more economical

solution than the ACE, even if it had only one application.  In this sense Ashby was an

intellectual entrepreneur who built a significant machine on his kitchen table out of surplus parts

from the war, in a self-financed project.  While this was true then, the opposite is true now, when

computers sit on the majority of desks and finding the analog circuit components that Ashby used

would be extremely difficult.  Therein lies the true advantage of the symbolic computational

simulation–because the computer potentially suits everyone’s modeling needs, they can be

produced cheaply in quantity and thus despite their vastly more complex structure turn out to be
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cheaper and easier than building specialized models.  This much was clear to Turing by 1946. 

Less clear is the quality of the symbolic simulation when compared to the analog.

In Winsberg’s (2003) analysis of simulations, he argues that it is often the case that the

mathematical theory underlying the simulation is not in question, only the local outcomes of a

specific situation.  One of the great advantages of simulations for these cases is the ability to

visualize the model, what Hughes (1997) calls their mimetic properties.  This advantage is due to

the ability of researchers to employ experimental practices (most notably observation) and

laboratory techniques in understanding the local simulations, as opposed to depending upon

mathematical practices and analytic techniques.  Yet these mimetic properties are dependent

upon the development of instrumentations within the simulation to make those properties visible. 

The symbolic processes themselves are rather opaque and not susceptible to direct observation. 

This entails more levels of indirection in the interpretation and visualization of data derived from

simulation.  From an epistemic perspective, one is getting further and further away from the

phenomena in question.  Consider the Homeostat and its ACE simulation.  The Homeostat can be

directly interacted with and observed.  Any interactions with the ACE simulation must be

preprogrammed, and the results must be interpreted from the symbolic output of the machine. 

While it is true that today we could write a simple Java program with a colorful on-screen

visualization of the Homeostat, this was hardly conceivable in 1946–which just proves the point

that any such symbolic visualization introduces another layer of interpretation.

There are other important practical issues of time which are similarly becoming obscured

by the increasing sophistication of computing machines.  First, there are issues of mathematical

complexity and computation time.  To simulate the behavior of the Homeostat’s circuits using

the equations of electrical engineering, or physics, would probably have taken far too long for a

machine like ACE to perform in real-time (something approximating the response time of a real

Homeostat).  The significance of having a real-time simulation is related to the mimetic property

mentioned above.  Namely, that one can interact with a real-time system in ways that must

themselves be simulated in false-time systems.  This is not always what is needed in science, but

is extremely important for understanding certain phenomena.  Real-time here applies to the

observers’ time frame and ability to act upon the system, receive feedback from that action, and
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evaluate the relationship of the two.  This feedback loop must be real-time for the observer, even

if the time-frame of the simulated phenomena is greatly sped-up (as in astronomical phenomena

like the movement of the planets) or slowed-down (as in high-speed phenomena like protein-

folding).  The significance of this aspect of analog models becomes even more apparent when we

consider the idea of a regulator as model.

8. Conclusions: Simulation and Computationalism

Von Neumann saw the power of mathematics to simulate detailed physical models, and

ultimately to allow for the control of enormously complex systems involving many dynamically

interdependent variables.  His computer was built to automate the mathematical calculations

needed to simulate these systems so as to allow mathematicians to develop ever more complex

and detailed simulations.  The brain, too, was a natural phenomenon which could be so

simulated, once it was scientifically understood.  The difference between Turing and von

Neumann was that von Neumann felt that Turing’s universal machine concept added almost

nothing to our understanding of the mind because it told us nothing about the brain.  Without a

clear understanding of the brain’s operation, the computer would never embody an artificial

mind.

Von Neumann ultimately came to see the task at hand to be one of modeling the detailed

microstructures of brain.  For him, the computer was not itself a brain, though his own design for

the EDVAC computer drew heavily on analogies to brain structures and neuronal functioning. 

The crucial aspects of the design of the computer were technical considerations of scalability,

reliability, and numerical accuracy as computers were given more memory and faster processing

speeds.  This was because he quickly realized that the scale of the simulations that would be

needed for brains would require vast numbers of calculations, and even small or infrequent errors

would result in critical failures.  He also quickly became skeptical about rapid progress being

made in building simulations of the brain.

Turing’s view of the computer was as the universal modeling machine.  But rather than

worry about modeling the brain in physical detail, he sought to simulate its behavior

symbolically.  Thus both Turing and von Neumann sought after symbolic simulations of the
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brain, but had very different approaches to these.  Ashby remained committed to analog

simulations through most of the 1950s, but seems to have given up on them after his frustration

with DAMS and accepting that the increasing capabilities of digital computers better suited his

needs.

Another way of thinking about the difference between analog and symbolic simulations is

to note that the symbols of a simulation inside a computer are not connected to the world in the

same way as the causal structures of an analog simulation are.  For the Homeostat, these

connections were highly relevant to Ashby’s theoretical views of the mind (Ashby 1952, 1956,

1961, 1962, 1967, 1968, 1972, Asaro 2008, 2009).  Turing’s claim that the distinctions are

irrelevant thus bespeak a significant theoretical disparity between the two men.  The best and

simplest way of characterizing this difference between Ashby and Turing is in terms of the

relationship between a system and its environment, which for Turing is irrelevant, yet for Ashby

is central.  It is a distinction of both theoretical and practical import.  Theoretically, Ashby starts

from the rich complexity of relationships between system and environment, while Turing

considers the environment only in the simplest and most idealized terms possible.  Practically,

Ashby was interested in building a machine that an observer could directly interact with in real-

time.  Such a direct interaction was essential both to his pedagogical and rhetorical aims, and to

his experimentalist desires (Asaro 2006).  For Turing, logical proof was the ultimate form of

demonstration, experimentalism was not a priority, and the details of the physical machinery

were inconsequential.  These distinctions became even more pronounced over time.  For even as

Turing turned to deeper considerations of learning and adaptation, he became more frank about

his reasons for avoiding issues of general intelligence, human behavior, and human-like bodies

for computers (Turing 1950, 1953, Teuscher 2002). 
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